

Département des Sciences Economiques et Gestion

Filière : Sciences Economiques et Gestion

Semestre 2

Module: Probabilités

Objectifs du module

> Comprendre et maîtriser les notions suivantes:

Probabilité, variable aléatoire, loi, espérance, variance, indépendance, convergence, la loi forte des grands nombres et le théorème de la limite centrale.

> Être capable de déterminer la loi d'une variable aléatoire donnée.

Description du contenu du module

 π

> Éléments de la théorie des ensembles

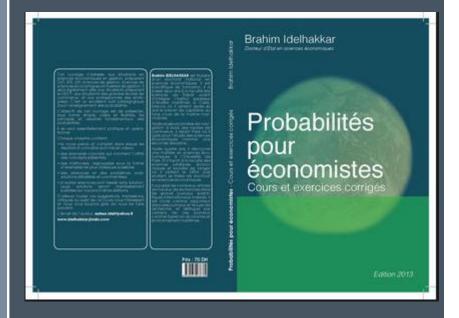
> Introduction aux phénomènes aléatoires

> Variables aléatoire discrète

> Variables aléatoire continues

> Lois de probabilités discrètes et continues

> Convergence en loi et en probabilité

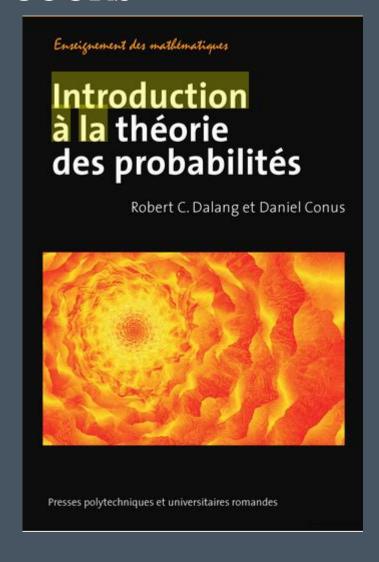


BIBLIOGRAPHIE

Probabilités pour économistes

Auteur: Brahim Idelhakkar

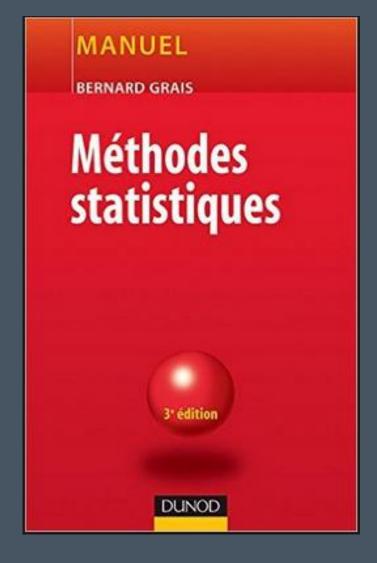
COURS



BIBLIOGRAPHIE

Introduction à la théorie des probabilités

Auteurs : R. Dalanger et D. Conus



BIBLIOGRAPHIE

Méthodes Statistiques

Auteur: Bernard Grais

BIBLIOGRAPHIE

COURS & EXERCICES

Introductions aux probabilités

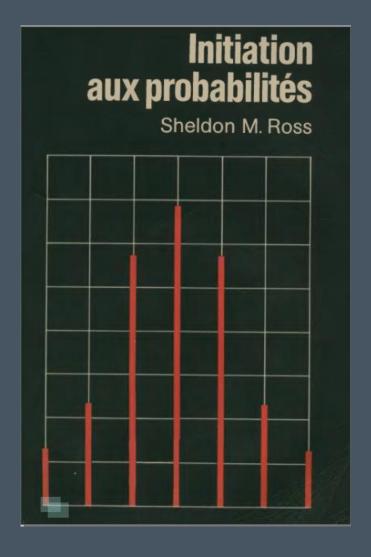
Auteur : Abdelmajid Gagou 1998

BIBLIOGRAPHIE

COURS & EXERCICES

Cours de probabilité

Pr. Outmane Noufail SOUSSI (2016)

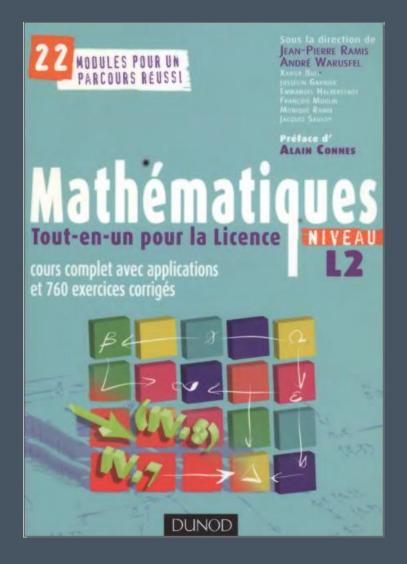


BIBLIOGRAPHIE

Initiation aux Probabilités

Auteur: Sheldon M. Ross

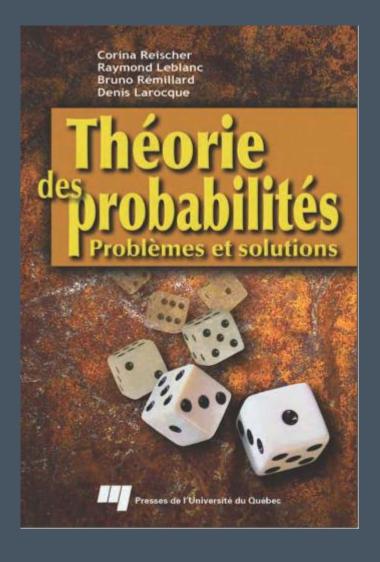
Traduit par Christian Hofer



BIBLIOGRAPHIE

MATHEMATIQUES TOUT-EN-UN POUR LA LICENCE NIVEAU L2

Cours complet avec applications et 760 exercices corrigés



BIBLIOGRAPHIE

Théorie des probabilités :problèmes et solutions

Auteurs : Corina Reischer, Raymond Leblanc, Bruno Rémillard, Denis Larocque

Chapitre 0:

Introduction et Théorie des Ensembles

> <u>Section 1</u>: Introduction

> <u>Section 2</u>: Théorie des Ensembles

Probabilité?

- > Vraisemblance, chance qu'une chose a d'être vraie.
- > Chance qu'un événement a de se produire.
- > Ensemble des règles à l'aide desquelles on calcule les chances et les possibilités de réalisation de certains évènements.

Définition du Centre National de Ressources Textuelles et Lexicales (CNRTL)

Historique des probabilité

Les premiers jeux de hasard marquent le début de l'histoire des probabilités.

- Selon Kendall (1956), l'origine du mot « *hasard* » serait dérivé du mot arabe « *al zahr* » (désignant un Dé) et aurait été rapporté en Europe lors de la 3ème croisade (1189-1192).
- C'est en France, avec Pascal(1623-1662) et Fermat(1601-1665) que la théorie des probabilités va prendre forme.

Section 1: Introduction

Comment peut on comprendre les probabilités?

> On doit commencer par le concept d'expérience aléatoire.

Définition:

■ Une <u>expérience aléatoire</u> est une expérience qui peut théoriquement être répété autant qu'on veut, dont on connait *l'ensemble* des résultats possible, mais dont le résultat est incertain.

Une expérience est dite "aléatoire" lorsque'elle vérifie trois conditions:

- On connaît tous les résultats possibles;
- Le résultat n'est pas prévisible;
- On peut reproduire plusieurs fois l'expérience dans les mêmes conditions.

Section 1: Introduction

Définition :

Une expérience aléatoire est donc toute expérience dont on connaît l'ensemble des résultats

Expérience	Ensemble Fondamental
Lancer une pièce de monnaie	{Pile, Face}
Jouer un match de foot	{Gagner, Perdre, Egalité}
On choisit une ville au Maroc au hasard et on détermine	{0%, 100%}
le taux de chômage	
Lancer d'un dé	{1, 2, 3, 4, 5, 6}
On demande à la clientèle d'une entreprise son degrés de	{Très satisfait, Satisfait,
satisfaction à l'égard d'un service ou un produit	Indifférent, Insatisfait, Très
saustaction a regard d'un service ou un produit	insatisfait}
On fait une opération bancaire au guichet et on calcul le	
temps d'exécution	$\{0, +\infty\}$

Section 1: Introduction

Exemple introductif:

- Considérons l'expérience aléatoire: « lancer un dé rouge et un dé bleu ».
- L'espace fondamental Ω est :

$$\Omega = \{ (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \}$$

L'événement A: dé rouge est plus grand que 2 et le dé bleu est 3 est :

$$A = \{ (3,3), (4,3), (5,3), (6,3) \}$$

Section 1: Théorie des ensembles Section 2: Théorie des ensembles

Définition:

• Un ensemble est une collection d'objets qu'on nomme ses éléments.

Exemple:

Ensemble des nombres entiers naturels $N: N=\{0;1;2;3;...\}$.,

Section 1: Théorie des ensembles Section 2: Théorie des ensembles

<u>Notation</u>: On note habituellement les ensembles avec des lettres majuscules, A, B, C, \ldots et les éléments a, b, c, \ldots avec des lettres minuscules. Soit deux ensembles A et B et deux éléments a et b, on note :

- Ø désigne l'ensemble vide
- $p \in A$ p est un élément de l'ensemble A
- $A \subset B$ signifie que A est contenu dans B ou un sous ensemble de B
- $A \cup B$ leur réunion
- $A \cap B$ leur intersection
- $\bar{A} = A^C$ le complémentaire de l'ensemble A
- $A \not\subset B$ signifie que l'ensemble A n'est pas contenu dans l'ensemble B
- On utilise les accolades { } pour désigner un ensemble

Section 1: Théorie des ensembles Section 2: Théorie des ensembles

Rappel sur la théorie des ensembles

- Soient deux ensembles A et B, supposés tous inclus dans un ensemble Ω appelé univers. On définit :
- L'intersection de A et B, notée (A∩B), est l'ensemble des éléments appartenant à A et à B.
- La réunion de A et B, notée (A UB), est l'ensemble des éléments appartenant à A ou à B.
- Si $A \cap B = \emptyset$, A et B sont dits disjoints.
- La différence (A B) = Tous les éléments appartenant à A et n'appartenant pas à B.
- Le complémentaire de A (\bar{A} ou A' ou encore C_A) = tous les éléments de Ω qui n'appartiennent pas à A (il est encore égal à Ω A).

Section 1: Théorie des ensembles Section 2: Théorie des ensembles

Rappel sur la théorie des ensembles

Le cardinale d'un ensemble E est le nombre d'éléments qu'il contient, on note celui-ci Card(E).

Exemple: Soit l'ensemble $E=\{a, b, c, d, e\}$. Card (E)=5.

 \triangleright Différence entre l'écriture $\{x,y\}$ et l'écriture $\{x,y\}$.

L'écriture $\{x,y\}$ est appelée paire: Elle ne tient pas compte de l'ordre des éléments . $\{x,y\} = \{y,x\}$

L'écriture (x,y) est appelée couple: Elle tient compte de l'ordre des éléments. $(x,y) \neq (y,x)$

Section 1: Théorie des ensembles Section 2: Théorie des ensembles

Remarque importante!

La paire $E = \{1, 2\}$ n'a pas les mêmes propriétés que le couple (1,2):

$$(1,2) \# (2,1)$$

$$E = \{1, 2\} = \{2, 1\}$$

Section 1: Théorie des ensembles Section 2: Théorie des ensembles

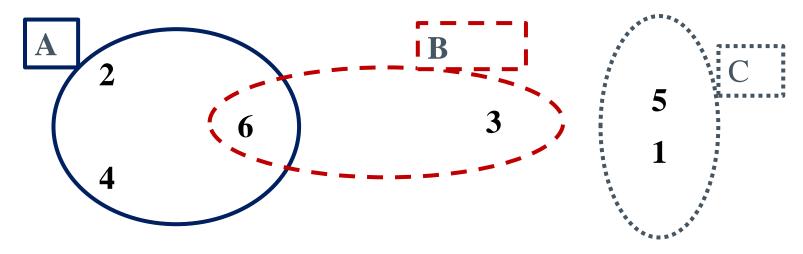
Propriétés:

- Commutativité : $A \cup B = B \cup A$
- Associativité : $(A \cup B) \cup C = A \cup (B \cup C)$
- Intersection est associative : $(A \cap B) \cap C = A \cap (B \cap C)$
- Distributivité : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- Transitivité : $A \subset B$ et $B \subset C \Longrightarrow A \subset C$
- Différence : $A \setminus B = \{x \in A \mid x \notin B\}$
- Différence symétrique : $A\Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$
- Complément : $\bar{A} = A^C = \{x \in \Omega | x \notin A\}$

Section 1: Théorie des ensembles Section 2: Théorie des ensembles

Illustration : diagramme de Venn (également appelé diagramme logique)

L'espace étudié correspond aux chiffres 1 à 6. Dans cet espace on définit $A = \{2,4,6\}$ comme l'ensemble des chiffres pairs et $B = \{3,6\}$ celui des multiples de 3.



$$\checkmark A \cup B = \{2,3,4,6\}$$

$$\checkmark A \cap B = \{6\}$$

✓ $B \not\subset A$, l'élément {3} ne fait pas parti de A